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ABSTRACT 
 
Normative systems use norms to regulate agents' activities in a Multi-Agent System (MAS). Existing methods infer the violation of a norm as the failure 
of an intelligent software agent to guarantee the effect of the norm at a certain time (fixed). This type of inference is without recourse to the norm's 
condition  and its identity that warranted the intelligent software agent failure. This study was therefore designed to develop Condition-based Knowledge 
Representational Structures (CKRS), capable of making violation inferences about the condition and the identity of the violated norm for open agent 
societies. Norms were formalised in a Horn's Clause (HC). The formalised norms were assigned norm identifications (Id) that they pass on to the 
normative tokens inferred from them. The language was applied to real life norms arising from lecturing, registration and examination domains using 
data from University of Ibadan, Nigeria. A reified Temporal Constraint Structure (TCS) that combined qualitative and quantitative relationships between 
actions and situations was used to describe the time constraints between situations (s) and the action types (a-type) in each norm. Satisfaction Rules 
(SRs) that determined if temporal constraints (tc) hold for actions (act) and situations were developed. Norm validity was represented as a relation 
between a norm's identity and the time of its validity. The CKRS was compared to existing methods in order to ascertain its effectiveness in identifying 
norms violation in MAS.  
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INTRODUCTION 
Normative systems use norms to regulate agents' activities 
in a Multi-Agent System (MAS). In other words, a 
normative system is a multi-agent system (MAS) associated 
with a set of norms (social law) (Artikis, 2003; Artikis et al., 
2009). Several works have been carried out in MAS on how 
norms can be used as mechanisms to coordinate the 
behavior of the intelligence software agents by describing 
the actions that are obligatory, permitted and prohibited for the 
agents. Specifically, norms are used in MAS to cope with 
autonomy, different beliefs, interests and desires of the 
agents that cohabit in the system. Based on the normative 
descriptions and the actual (past and present) actions of the 
agents, the system should detect the deviating behavior of 
any agent in the system. Artikis and Sergot, (2010), 
specified norm-governed computational societies using two 
action languages; the C+ language and the Event Calculus 
(Kowalski and Sergot, 1986), and were executed using the 
Causal Calculator Software and the Society Visualise 
Software respectively in order to predict the future. 

Existing normative systems infer the violation of a norm by 
detecting the failure of an agent to guarantee the effect of 
the norm at a certain time (fixed). This type of inference is 
without recourse to the norm's condition (agent, action 
type, norm situation, flexible time) and its identity that 
warranted the intelligent software agent failure. 
Furthermore, it is pertinent to determine the validity of the 
violated norm(s) as the time the violation took place. A 
norm is said to be valid at a point in time if it is part 
(member) of the system in consideration at that point in 
time and the interval during which the norm is valid, is 
called the external time of that norm (Marin and Sartor, 1999; 
Royakkers and Dignum, 1997). The aim of this research is 
to develop Condition-based Knowledge Representational 
Structures (CKRS), capable of making violation inferences 
about the condition and the identity of the violated norm. 
 
 
RELATED WORKS 
In the literature, several authors such as (Stratulat, et al., 
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1999; Marin and Sartor's, 1999; Castelfranchi et al. 2000; 
Stratulat, et al., 2001a, 2001b; L'opez y L'opez, 2003; Artikis, 
2003; Sadri et al., 2006; Artikis et al., 2009; Artikis and 
Sergot, 2010; Ahmad et al., 2011, among others) have 
formalised norms in Artificial Intelligence and Law. Jones 
and Sergot (1993), were able to formalised the deontic 
status and action of an agent in a system using modal 
deontic logic, they did not consider norm condition 
(situation) and effect, as well as the temporal constraints 
relating to the norm. Mostly because deontic logic can not 
explicitly represent time, it makes it difficult for them to use 
to represent real life norms. This is one reason that lead to 
using First order logic (Reified) in this research. In Sadri et 
al. (2006) work, the idea of reifying time constraints was 
used however, their constraints were between time points, 
which will not be able to capture both qualitative and 
quantitative constraints between indefinite times. This gap 
is bridged in this study by representing the time interval 
constraints using time point images (TPI), so that indefinite 
times can be represented. It was also observed that though 
Artikis et al., (2009) and Artikis and Sergot (2010) 
formalised sanction but they avoided the issue of temporal 
constraints between norm's condition and their effects, 
unlike formalisms presented in this study. On Stratulat et al. 
(1999, 2001a, 2001b) works, it was discovered that they 
based their detection of violations of normative positions as 
being the non-execution of an obligatory action or the 
execution of a forbidden action. Stratulat et al., (200la) 
proposed a formalisation of the life-cycle of normative 
position using first order logic to address the issues of norm 
violation and validity of the norms. Their violation was 
represented with the fluent V(ag, act, int): which means 
agent ag violated a normative position with respect to the 
execution of an action of type act over the interval int. A 
key aspect of their definition of a violation is the time of 
observation of the violation. An example of their violation 
is:  
holds (t, V (agent, α, [t1, t2]))  ≡ 
 holds (t; O (agent, α, [t1; t2])) ∧ [t1, t2] < [t, ∞] ∧ 
  ∀ act (instance _ of (act, α) ⇒ 
   holds (t, failed (agent, act, [t1, t2]))) 
 
In this statement, t is the time when the violation is 
observed or detected. This type of inference is without 
recourse to the norm's condition (agent, action type, norm 
situation(condition), flexible time) that warranted the 

intelligent software agent failure and identity of the 
violated norm. This makes an agent (the normative agent 
system) lose sight of the conditions under which a violation 
took place. Take for instance a real life scenario; in an 
electronic institution where there is a norm which says 
agent has an obligation to supply an order within forty 
eight (48) hours after receiving the placement order and the 
acknowledgment of payment for the order. Generally, there 
is always a condition warranting an action to take place in a 
dynamic world. In the e-institution scenario given here, the 
conditions required the agent to oblige (or fail to oblige) to 
the norm are: 

i) The agent receiving the placement order and, 
ii) Receiving the acknowledgment of payment for 

the order. 
The ignored information about the violation makes it 
difficult for an agent receiving it to know why a violation 
has taken place and perhaps learn how to avoid such a 
violation the next time, this is main gap paper aimed to 
solve. Therefore, to completely formalise norms in a 
dynamic normative agents system (NAS), there is an 
absolute need to base the formalisation on the norm's 
situation (condition) as well as action (or action type). 
 
Apart from the above, the issues of time interval (internal 
time) and validity of norms remains pertinent in normative 
agent systems (NAS) formalisation. Internal time of norms 
refers to the time interval in which the condition of the 
norm should hold in order to produce the norm's effect 
(Artikis, 2003; Marin and Sartor's, 1999). However, the 
temporal constraints reasoning for NAS formalisation 
should be flexible enough to capture dynamically the 
temporal constraints between norms conditions and effect, 
not just the temporal constraints based on fixed time as in 
(Stratulat et al., 200la; and Sadri, et al., 2006). In other words, 
it is very important in formalizing the life-cycle of 
normative positions in a dynamic normative agents system 
(NAS), to make use of a reified Temporal Constraint 
Structure (TCS) which described constraints between the 
times of situations and the action types they warrant in 
each norm in a dynamic way. 
 
Furthermore, it is equally important in deciding if an agent 
violates a particular norm in NAS, the violation rule should 
not be based on the existence or otherwise of an action and 
temporal constraints only within a time interval, rather 
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should be formalised in terms of the existence or otherwise 
of an action type, in response to the (or anticipation of) 
situation (condition) satisfying the required temporal 
constraint and the validity of the norm at the time of the 
given situation (condition). A norm is considered valid at a 
point in time if it is part (member) of the legal system in 
consideration at that point in time. The validity interval of a 
norm is the interval during which the norm is valid (that is, 
external time). 
 
 
3 THE CONDITION-BASED KNOWLEDGE 
REPRESENTATIONAL STRUCTURES (CKRS) 
Norms are viewed as the need for an agent to carry out or 
avoid carrying out an action in response to (or in 
anticipation of) a condition (here represented by situations 
like in Situation Semantics (Schubert, 2000)) within some 
time constraints. Thus the norms in this study have the 
following components: 
i)   Normative position (e.g. Obligation, Prohibition, or 
Permission) 
ii) The agent itself, 
iii) An action type, 
iv) A situation, 
v) The time constraint between the action and situation and 
vi) The norm's identity. 
A normative position is treated as the relation (or 
predicates) bringing the other five elements together. The 
signature of the language is subsequently defined. 
 
3.1      THE LANGUAGE: SORTS, FUNCTIONS AND 
PREDICATES 
The language of the designed normative system in this 
paper is a reified many sorted first order logic with 
equality. The main sorts are Agents(Ag), Action-types (ActT), 
Action (Act), Fluents (Fl), Events (Ev), Processes (Pr), 
Situations (Sit), Time-Intervals(lnt), Temporal-Constraints (TC), 
Norm-identifications (Nld). The Domain Sorts include entity 
classes in the domain such as Class Classrooms, Objects.   
There are three relations used to assert the fact that an 
agent is in some normative position. These are Obligations, 
Prohibitions and Permissions. Each of this is a quaternary 
relation. The signatures are stated below: 

Obligation: Ag x ActT x Sit x TC x Nld → Boolean  
Prohibition: Ag x ActT x Sit x TC x Nld → Boolean  
Permission: Ag x ActT x Sit x TC x Nld → Boolean 
 

An obligation is true when an agent is expected to take a 
particular action of a certain type when a situation arises, in 
such a way that the times of agent's action and the situation 
satisfy the temporal constraint. Similarly, a permission 
(prohibition) is true when an agent is (not) allowed to carry 
out any action of a certain type.  
 
There are also predicates that denote Allen's (1984) interval 
relations and the other predicates built on them. 
Meets, After, Starts, Finishes, Contains, Overlaps: Int x Int → 
Boolean 
There are other temporal interval relations which definition 
is based on those of Allen. Those include the following: 

Within, Subinterval, Disjoint: Int x Int → Boolean 
 
The Holds predicates are used to associate fluents that are 
true with the situations in which they are true. Apart from 
this, Actions and Action types are related by an instance 
relation. 

Holds:     F1 x Sit → Boolean 
Holds_in:  F1 x Sit → Boolean 

The following predicates describe relations involving 
actions. The first one ActionType describes the relation 
between an action instance and the action type, while Actor 
is a relation between an action instance and the agent that 
carries it out. 

ActionType:     Act x ActT → Boolean 
Actor:         Agent x Act → Boolean 
 

With respect to situations there are two major relations 
signified by the predicates SubSit and SubSitT respectively 
denote sub-situation and temporal sub situation relations. 

SubSit:    Sit x Sit → Boolean 
SubSitT :  Sit x Sit → Boolean 
 

A pair of situations is a member of the sub-situation 
(SubSit) relation if every fluent that holds in the first 
situation also holds in the second situation and their time 
are the same. A pair of situations is a member of the 
temporal sub-situation relation (SubSitT) if the time of the 
first situation is a subinterval of the second. 
 
Another relation denoted by the predicate Satisfy relates 
two time intervals and a temporal constraint they satisfy: 

Satisfy:   Int x Int x TC → Boolean 
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Satisfy is true when two time intervals satisfy the temporal 
constraint. Another relation is between a norm and its time 
of validity. The signature of the predicate is: 

Valid:         Norm-Id x Int → Boolean 
 
There are also some group of functions. One group of 
functions of 0 or 1-arity return actions. 

arrive:         Location   → Act 
 
The other group of 1-arity and 2-arity functions returns 
fluents (A fluent is a reified propositional description of a 
partial state of the world). A good example of this is when a 
fluent is defined by the occurring of an event. Another 
function/prog is when a fluent is defined by a process being 
in progress, 

occurring:    Ev → F1 
prog:  Pro → Fl 

 
The other examples include an agent possessing an object 
and the fact that an event is happening at a location. 

possess:   Ag x Object → F1 
venue:   Event x Location → F1 
 

There is a maintain function which returns the kind of 
action that an agent takes when he keeps a fluent holding in 
a situation:  

 maintain:     F1 → ActT 
 

Apart from these there are four time functions TimeA and 
TimeS, TimeE and TimeP which map actions and 
situations, events and processes respectively to time. 

timeA: Act → Int 
timeS: Sit → Int 
timeE: Ev → Int 
timeP: Pr → Int 

 
A Time point image (TPI) may be either of the constants (B, 
E} or an application of the time displacement function tdisp 
to either B or E and an integer. The signatures are given as 
follows:     

tdisp: TPI  x   Integer → TPI 
A basic time constraint is obtained by the application of one 
of the functions eq (which means equal to), le (which means 
less than or equal to),  lt (which means less than), gt (greater 
than) and ge (greater than or equal to). 

eq,   le,   It,   gt,   ge   :  TPI  x  TPI → TC 

 
Other temporal constraints can be obtained by applying 
Boolean functions on existing temporal constraints. 

and:   TC  x  TC  →  TC 
of: TC  x  TC  →  TC 
neg:  TC → TC 

 
3.2 SEMANTICS OF THE LANGUAGE 
This subsection focuses on describing the logical entities of 
the representation such as; situations, fluent, action type, 
temporal constraints structure (TCS), satisfaction rules and 
their interactions. 
 
3.2.1 SITUATIONS 
The notion of situations as used in this thesis covers such 
concepts as states and the occurring of events and 
processes, A common name for all these in the literature is 
the term eventualities as used by Galton, (2005). However, 
the term situations are used because the usage of the term is 
akin to the Situational Calculus and the domain of 
situations and their relations are similar to those used by 
the situation semantics inspired work of Schubert (2000). 
Like in Schubert's FOL**, a fluent may either partially or 
fully characterize a situation. However unlike FOL**, the 
possibility of ever associating complex (logical) sentences 
with situations is ruled out. In fact the fluent is treated as 
the range for a function. 
 
The predicate Holds is used to associate a fluent with a 
situation that it fully characterizes, while the predicate 
Holds_in is used in the case of characterizes. Holds_in is a 
generalization of Holds. That relationship between them is 
formalised thus: 

∀f,   s.   Holds(f, s) → Holds_in(f, s) 
In semantic terms, a situation is treated (in this paper) as a 
solid entity so that it can only be true over a specific 
interval. 
 
Sometimes the occurring of an event may fully characterize 
a situation but the fact that an agent plays a specified role 
in the event only partially characterizes the same situation. 
For instance, if an event of the type class holds in a certain 
situation, then some particular agent must play the role of a 
teacher in that situation, while a number of other agents 
must play the role of students. This can be expressed: 
∀s. Holds(occurring(class), s) ˄ Event_type(class, Class) → 
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            Ǝ! a. Holds_in(role( a, Teacher), s) 
 

∀s. Holds(occurring(class), s) ˄ Event_type(class, Class) →    
            Ǝa. Holds_in(role( a, Student), s) 
These kind of partial characterizations in terms of Holds_in 
are important for us to be able to specify norms of conduct 
when an event brings together different agents. In general if 
a fluent partially characterizes a situation then there is a 
situation it fully characterizes which is a sub-situation of 
the original situation. This is formalised as: 
∀f, s. Holds_in(f, s) ↔ Ǝ s1 Holds(f, s1) ˄ SubSit(s1, s) 

 
∀s, s1. SubSit(s, s1) ↔ (∀f. Holds_in(f, s) → Holds_in(f, s1)) ˄ 
timeS(s) = timeS(s1) 
  
Another relation between fluent and situation is denoted by 
the predicate Holds_within.  
∀f, s. Holds_within(f, s) ↔ Ǝ s1 Holds(f, s1) ˄ SubSitT(s1, s)  
∀s, s1.  SubSitT(s, s1) ↔  Subinterval(timeS(s), times(s1)) 

 
The time of an event which occurring constitutes a situation 
is the same as the time of the situation. That is formalised 
thus: 

∀e, s. Holds(occurring(e), s) →  timeE(e) = timeS(s) 
 
3.2.2    FLUENTS AND ACTION TYPE 
In this language, action types and fluent are reified. In 
principle reification is about making something which 
ordinarily would be regarded as a proposition into a thing 
that can be quantified and reasoned about (Galton 2005). In 
Artificial Intelligence (AI) literature eventualities such as 
states, events and processes which are normally 
represented as proposition are reified. 
 
In reifying, the predicates involved in the proposition are 
given the status of functions of appropriate arity returning 
the appropriate kind of eventuality such as fluent or action 
type. As pointed out earlier, the occurring of an event and 
the progress of an event can be  
 
regarded as fluents. Either of this kind of fluents can 
completely characterize a situation. For example, the 
situation so is fully characterized by the occurring of an 
event e: 

Holds(occurring(e), s0) 
Similarly the situation si is fully characterized as a process p 

being in progress: 
Holds(prog(p), s1) 

 
3.2.3    TEMPORAL CONSTRAINTS STRUCTURE (TCS) 
Temporal constraints are needed to specify the constraint 
between the time of a norms effect and the situation. Time 
constraints were reified as done by Sadri et al., (2006). 
However, the difference between this approach and Sadri et 
al. is that their constraints involve actual times while this 
involves time point images (TPIs). The time point images 
are used to model such constraints as within ten minutes of 
the beginning of the class and not later than five minutes to the 
end of the examination.etc. 
 
For example, Sadri et al. (2006) gave an example of 
formalizing the prohibiting any agent from parking at the 
city centre between 10 Hours and 17 Hours as: 

prohibited(act(park, a, city centre), T, 10 < T < 17) 
 
However, the reality is that the times given for this 
constraint are given relative to the start of any new day. In 
that sense the times used in this constraint are really not 
absolute times. Another example that illustrates this from 
Stratulat et al. (200la, 2001b) is the example of an obligation 
to pay taxes between January 1 and 3 1 every year on the 
part of an agent a. That is rendered as a function O 
returning a fluent may hold at a certain time. This fluent is 
rendered as: 

O(a, pay-taxes, [January - 1 , January-31 ]) 
Again these times are erroneously taken as time points. 
However, they are at best images which are relative to the 
beginning of a year. They only become a time point when 
those dates are located within a specific year, just as the 
time point in the last example needs to be situated within a 
specific day for it to be an actual time point. 
 
The approach in this study on the norm representation, 
therefore, is to relate the time of the condition of a norm 
(which was expressed as a situation), with that of the effect 
of the norm which is the time of the action of the type 
specified as a response to the situation. A basic temporal 
constraint is composed by the application of one the 
functions eq (equal), ge (greater than or equal to), le (less 
than or equal to), gt (greater than) and lt (less than) to an 
ordered pair of TPI, the first relating to the action (or 
norm's effect) while the second is related to the situation 
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(norm's condition). For example: 
eq(B, E) means the action begins when the 

warranting situation ends. 
eq(tplus(B, 3), E) means that the action is to start 
exactly 3 time units after the situation ends. 

 
Other temporal constraint can be composed from other 
temporal constraints by the functions and, or as well as neg. 
For example, and(eq(B, B), eq(E, E)) describes an action that 
must take place at exactly the same time as the situation. 
 
Each of Allen's qualitative relations (Allen, 1984) can be 
represented by the proposed TCS. The following are the 
equivalences between Allen's interval relations and the 
proposed TCS. 

Before =  lt(E, B) 
Overlaps = and(lt(B, B), lt(E,E)) 
Contains = and(lt(B, B), gt(E, E)) 
Starts  =  and(eq(B, B), lt(E, E)) 
Finishes = and(gt(B, B), eq(E, E)) 
Meets =   eq(E,B) 

A major advantage of the TCS representation is that it can 
represent constraints that combine both qualitative and 
quantitative relationships. Examples of such relationships 
are: 
Start not later than 4 units of time into = ge(B, tplus(B, 4)) 
End 10 units of time into  = eq(E, tplus(B, 10) 
 
These are the kinds of constraints that norms may contain 
as holding between norm conditions and their effects. The 
following section presented a formalisation of the real life 
norms. 
 
3.3    REPRESENTATION OF NORMS 
A norm is basically a rule. Each of these normative rules help 
in making inferences about what an agent is expected to do 
or desist from doing within a certain time frame. The 
inferences made from these normative rules are referred to 
as normative tokens. 
An obligation requires an agent to carry out an action of a 
certain type within a time constraint if it is playing a certain 
role within a certain context. An obligation is violated by an 
agent if when it finds itself playing the specified role within 
such a context it fails to carry out an instance of that action 
type within the time constraint. The structure of the 
predicate for representing obligations is presented thus: 

 
Obligation(Agent, Action-type, Situation, Temporal-
Constraint, Norm-Id) 
 
Norm-id is an identifier for the norm rule that produced the 
actual normative token which is an obligation. Every 
obligation that is produced by the norm bears the same 
norm-id. As such every rule that helps to infer obligations, 
prohibitions and permissions has a unique norm-id that it 
carries. This kind of rule naming is refered to by the term 
rule reification which is similar in spirit to the notion of 
Davidson's reification (Galton 1991), This is illustrated with 
Norm 3.1 and 3.2 as examples of rules generating this kind 
of normative tokens. 
 
Norm 3.1 
A teacher assigned to teach a class must arrive either on time or 
not later than 10 minutes into the time of a class. 
∀a, v, s, 
Obligation(a, arrive-at(v), s, and(le(E, tplus(B,10)), ge(E, B)), 
OB101) if 

Ǝ e. 
Holds(occurring(e), s) ˄ 
EventType(e, Class) ˄ 
Holds-in(venue(e, v), s) ˄ 
Holds-in(role(a, Teach), s)) 

 
Norm 3,2 
Student must register for his/her courses in a semester within one 
month of the commencement of the semester. 
∀a, o, s. 
Obligation (a, register(a,sem)), s, and(and(ge(E, B), le(E,B, 
30)), ge(B,B)), OB102) if 
   Ǝs1, s2 

Holds(studentship(a),S1) ˄ 
ProcessType(Sem, Semester) ˄ 
Holds(prog(sem), s) ˄ 
Within(timeS(s), timeS(s1))˄ 
¬ OnSuspension(a, sem) 

 
A prohibition is a norm that disallows an agent to carry out 
an action of a certain type within some time interval that 
has a temporal relation with the warranting situation 
(condition) of the prohibition. The structure of a prohibition 
is given thus: 
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Prohibition(Agent, Action-type, Situation, Temporal-
Constraint, Norm-id) 
 
The norm 3.3 and norm 3.4 illustrate examples of rules that 
infer such normative tokens. 
 
Norm 3.3 
Student must not be allowed to come in for an examination thirty 
(30) minutes after the 
commencement of the examination. 
∀a, s, e. 
Prohibition(a, arrive(v), s,  gt(E, tplus(30)}, PR0103), if 

Holds(occuring(e), s) ˄ 
EventType(e, Examination)) ˄ 
Holds(Venue(e,v), s) ˄ 
Holds-in(role(a, Candidate), s) 

Norm 3.4 
It is prohibited for members of university community to release 
confidential document of the university to public domain without 
authorization. 
∀a, doc, s, 
Prohibition(a, release(doc), s, or(and(lt(B, E), ge(B, B)), 
and(le(E, E), gt(E, B))), PRO014) if 

Ǝs1,s2, u. 
Holds(alive(doc), s1) ˄ 
Holds(Statusdoc(doc, Confidential) ˄ 
Holds(employ(u, a), s2) ˄ 
University(u) ˄ 
Submterval(timeS(s), timeS(s1)) ˄ 
Submterval(timeS(s), timeS(s2)) ˄ 

 
A permission is a norm that allows an action by an agent as 
a result of a certain situation arising. The structure of 
permission is similar to that of the other kinds of norms as 
seen below: 
 
Permission(Agent, Action-type, Situation, Temporal-
Constraint, Norm-id )  
 
Examples of this is given in norm 3.5 and norm 3.6 
 
Norm 3.5 
Members of the university community are permitted to put on 
their official identity card while on duty.  
∀a, s, 
Permission(a, put_id-on(a), s, and(ge(B, B), le(E, E)), PER010) 

if  
  Ǝu, s1 

Holds(onDuty(a), s) 
Holds(employ(a, u) s1) 
University(u) 
Within(timeS(s), timeS(s1) 
 

Norm 3.6 
Lecturer is permitted to give reading books on his assigned course 
to the student at the beginning of lecture in a semester.  
∀a, b, s. 
Permission(a, give(b), s, le(E, B), PER012) if  

Ǝco. 
Holds(prog(co), s) ˄ 
ProcessType(co, Course) ˄ 
Holds_in(role(a, Teacher), s) ˄ 
Holds_in(role(b, ReadingBook), s) 

 
Having represented norms, it is important to discuss the 
representation of the validity of those norms. Norm validity 
is a relation between a norm and the interval over which 
the norm is valid. For example, the legal norm from the 
formalisation of the British Nationality Act 1981 (Segot et 
al., 1986). 
 
The norm any person born in the UK becomes a British citizen 
is a norm that was only valid until 1981. A representation of 
that norm in the proposed language is presented thus: 
∀x, s 
Obligation (HMG, grant-citizenship(x), s, eq(E, B), NBB-1) if 

Holds(born-in(x, UK), s) 
 

However, any agent interpreting that norm on behalf of 
Her Majesty's Government (HMG) must be aware that the 
validity of the norm is from 1950 and 1981. 

Validity(NBB-l,(1950, 1981)) 
As such it is only if the norm situation s happened within 
that interval of validity that the norm NBB-1 is valid. 
Validity is an important condition for deciding norm 
violation as we shall demonstrate. 
 
 
3.4     SATISFACTION RULES 
The proposed Satisfaction Rules (SRs) are used to decide 
whether or not a particular pair of time intervals satisfies a 
temporal constraint. Those time intervals may be times of 
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actions, situations or even events. Some of the SRs are 
recursive such as: 
∀act,s,tcl,tc2 

Satisfy-Cons(timeA(act), timeS(s), and(tcl, tc2)) if 
Satisfy-Cons(timeA(act), timeS(s),tcl) ˄ 
Satisfy-Cons(timeA(act), timeS(s), tc2). 

 
The other non-recursive rules handle basic temporal 
constraints. These rules represent a simple translation of 
each of the temporal constraint functions into the 
equivalent relation. The following axioms are all examples 
of the It constraint.  
∀act, s. 
Satisfy-Cons(timeA(act), timeS(s), lt(disp(B, t1), disp(B, t2))) if 

begin(timeA(act)) + t1 <  begin(timeS(s)) + t2  
 

∀act, s. 
Satisfy-Cons(timeA(act), timeS(s), lt(B, E)) if 

begin(timeA(act) < end(timeS(s))  
 

∀act, s, 
Satisfy-Cons(timeA(act), timeS(s), lt(E, B)) if 

end(timeA(ati)) < begin(timeS(s))  
 

∀act, s. 
Satisfy-Cons(timeA(act), timeS(s), lt(E, E)) if  

end(timeA(act)) < end(timeS(s)) 
 
3.5      NORM VIOLATIONS 
In order to make inferences about norm violation one need 
to know the existence of three fundamental things. The first 
thing is the existence of a normative token such as an 
agent's obligation or prohibition to carry out or desist from 
carrying out an action. The second thing is the failure to 
conform to the requirement of the normative token. The 
third thing is the validity of the normative rule at the time 
the condition held. 
 
The violation of an obligation takes place when in the 
occurrence of the situation within the validity period of the 
rule that generated the normative token, the agent 
implicated is unable to carry out the needed action within 
the required time constraint. This is formalised as the 
following Horn's Clause: 
∀a, norm-id, s.  
Violate(a, norm-id, s) if 

Ǝ act-type, tc. 
Obligation(a, act-type, s, tc, norm-id) ˄ 
Validity(norm-id, j) ˄ Subinterval (timeS(s), j) ˄ 
∀act (¬EventType (act, act-type)˅ 
¬ Actor(a, act) ˅ 
¬ Satisfy-Cons(timeA(act), timeS(s), tc)) 

 
In the case of a prohibition, a violation takes place when in 
the case of the occurrence of the situation, the implicated 
agent carries out the forbidden action during a time interval 
that satisfies the constraint with the time of the situation. 
Such a violation is formalised thus: 
∀a, norm-id, s.  
Violate(a, norm-id, s) if 
  Ǝ act-type, tc, act. 

Prohibition( a, act-type, s, tc, norm-id) ˄ 
ActionType(act, act-type) ˄ 
Actor(a, act) ˄ 

Validity(norm-id, j) a, Subinterval(timeS(s), j) ˄ 
Satisfy-Cons(timeA(a), timeS(s), tc). 

 
This approach contrasts with timed violations that were 
implemented by Stratulat et al., (200la). In Stratulat et al. 
work, a violation of an obligation is said to have taken place 
at a time t, if an agent has an obligation to carry out an 
action during the time interval (t1, t2) and as at time t which 
is later than t2 the action has not yet been taken. 
 
3.6 COMPARATIVE EVALUTION OF CKRS WITH 

EXISTING NORMS REPRESENTATIONS 
The proposed CKRS is concerned with the logic constructs 
of norms representation leading to normative violation 
inferences that will facilitate how multiagent sytems 
regulate the agents in the systems. Table I shows the 
comparison of the proposed CKRS with existing norms 
representation approaches in literature. The comparison 
shown in Table I involves norms representation literature 
between years 2001 to 2012.     
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The CKRS can represent real life norms much better than 
existing methods in literature because it was formalised 
using reified Frst Order Logic that confer expressive 
advantages in representing norms and meta-norms. 
Furthermore, the CKRS based its temporal constraints 
reasoning on Time Point Images (TPI) that is able to capture 
both qualitative and quantitative constraints between 
arbitrary times. However, CKRS allows the representation 
of norms using relative times. The violation inference of the 
proposed CKRS takes into consideration, the situation 
warranting the norm violation and the validity of the norm 
as the time of the situation and the time of the action with 
respect to whether it satisfies the prescribed constraint with 
the time of the situation. When a violation is established, 
the CKRS will explicitly capture the condition (situation) 
warranting the violation and the identity of the norm 
violated.    
 
 
4 CONCLUSION 
The proposed Temporal Constraints Structures' (TCS) can 
represent constraints that combine both qualitative and 
quantitative relationships. Also, the time point images 
(TPIs) involved in the TCS will aid greatly in relating the 
time of the condition of a norm (situation) with that of the 
effect of the norm which is the time of the action of the type 
specified. This is opposed to existing methods in literature 
which is based on the time of the action only. Furthermore, 
a condition-based knowledge representational structure 
was developed. The condition and the identity of the norm 
violated were adequately represented with the developed 
structure. Multi-agent systems can adopt this CKRS to 
regulate agents' interaction in the system. This kind of 
normative system will enhance the ability of agents new to 
the society to become aware of existing norms in the 
society. 
 

5 RECOMMENDATIONS  
A future direction of this work is to situate the violation 
necessarily within the context of a wider logical theory of 
action. Such a logical theory of action which is beyond the 
scope of this work will be mindful of the fact that an action 
has both preconditions and post-conditions. In that case for 
example, an agent may not be held liable for a violation if 
the conditions are not suitable for carrying out the 
obligation. In this type of scenario should be regarded as an 
excusable violation, which should not attract any sanction. 
Another potential direction of this work is to explore how 
plan recognition theories can enchance norm learning. Plan 
recognition theories enable the inference of high level goals 
from individual actions carried out by an individual agent. 
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