
International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 906
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Condition-Based Knowledge Representational
Structure for Identifying Norms Violation In

Logic-Based Normative Systems

BABALOLA Moyin Florence and AKINKUNMI Opeoluwa Babatunde

ABSTRACT

Normative systems use norms to regulate agents' activities in a Multi-Agent System (MAS). Existing methods infer the violation of a norm as the failure
of an intelligent software agent to guarantee the effect of the norm at a certain time (fixed). This type of inference is without recourse to the norm's
condition and its identity that warranted the intelligent software agent failure. This study was therefore designed to develop Condition-based Knowledge
Representational Structures (CKRS), capable of making violation inferences about the condition and the identity of the violated norm for open agent
societies. Norms were formalised in a Horn's Clause (HC). The formalised norms were assigned norm identifications (Id) that they pass on to the
normative tokens inferred from them. The language was applied to real life norms arising from lecturing, registration and examination domains using
data from University of Ibadan, Nigeria. A reified Temporal Constraint Structure (TCS) that combined qualitative and quantitative relationships between
actions and situations was used to describe the time constraints between situations (s) and the action types (a-type) in each norm. Satisfaction Rules
(SRs) that determined if temporal constraints (tc) hold for actions (act) and situations were developed. Norm validity was represented as a relation
between a norm's identity and the time of its validity. The CKRS was compared to existing methods in order to ascertain its effectiveness in identifying
norms violation in MAS.

Keywords: Multi-Agent Systems, Horn's Clause, Temporal Constraints Structure, Condition-Based Knowledge Representational Structures, Satisfaction
Rules, Norms, Normative Token.

INTRODUCTION
Normative systems use norms to regulate agents' activities
in a Multi-Agent System (MAS). In other words, a
normative system is a multi-agent system (MAS) associated
with a set of norms (social law) (Artikis, 2003; Artikis et al.,
2009). Several works have been carried out in MAS on how
norms can be used as mechanisms to coordinate the
behavior of the intelligence software agents by describing
the actions that are obligatory, permitted and prohibited for the
agents. Specifically, norms are used in MAS to cope with
autonomy, different beliefs, interests and desires of the
agents that cohabit in the system. Based on the normative
descriptions and the actual (past and present) actions of the
agents, the system should detect the deviating behavior of
any agent in the system. Artikis and Sergot, (2010),
specified norm-governed computational societies using two
action languages; the C+ language and the Event Calculus
(Kowalski and Sergot, 1986), and were executed using the
Causal Calculator Software and the Society Visualise
Software respectively in order to predict the future.

Existing normative systems infer the violation of a norm by
detecting the failure of an agent to guarantee the effect of
the norm at a certain time (fixed). This type of inference is
without recourse to the norm's condition (agent, action
type, norm situation, flexible time) and its identity that
warranted the intelligent software agent failure.
Furthermore, it is pertinent to determine the validity of the
violated norm(s) as the time the violation took place. A
norm is said to be valid at a point in time if it is part
(member) of the system in consideration at that point in
time and the interval during which the norm is valid, is
called the external time of that norm (Marin and Sartor, 1999;
Royakkers and Dignum, 1997). The aim of this research is
to develop Condition-based Knowledge Representational
Structures (CKRS), capable of making violation inferences
about the condition and the identity of the violated norm.

RELATED WORKS
In the literature, several authors such as (Stratulat, et al.,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 907
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

1999; Marin and Sartor's, 1999; Castelfranchi et al. 2000;
Stratulat, et al., 2001a, 2001b; L'opez y L'opez, 2003; Artikis,
2003; Sadri et al., 2006; Artikis et al., 2009; Artikis and
Sergot, 2010; Ahmad et al., 2011, among others) have
formalised norms in Artificial Intelligence and Law. Jones
and Sergot (1993), were able to formalised the deontic
status and action of an agent in a system using modal
deontic logic, they did not consider norm condition
(situation) and effect, as well as the temporal constraints
relating to the norm. Mostly because deontic logic can not
explicitly represent time, it makes it difficult for them to use
to represent real life norms. This is one reason that lead to
using First order logic (Reified) in this research. In Sadri et
al. (2006) work, the idea of reifying time constraints was
used however, their constraints were between time points,
which will not be able to capture both qualitative and
quantitative constraints between indefinite times. This gap
is bridged in this study by representing the time interval
constraints using time point images (TPI), so that indefinite
times can be represented. It was also observed that though
Artikis et al., (2009) and Artikis and Sergot (2010)
formalised sanction but they avoided the issue of temporal
constraints between norm's condition and their effects,
unlike formalisms presented in this study. On Stratulat et al.
(1999, 2001a, 2001b) works, it was discovered that they
based their detection of violations of normative positions as
being the non-execution of an obligatory action or the
execution of a forbidden action. Stratulat et al., (200la)
proposed a formalisation of the life-cycle of normative
position using first order logic to address the issues of norm
violation and validity of the norms. Their violation was
represented with the fluent V(ag, act, int): which means
agent ag violated a normative position with respect to the
execution of an action of type act over the interval int. A
key aspect of their definition of a violation is the time of
observation of the violation. An example of their violation
is:
holds (t, V (agent, α, [t1, t2])) ≡
 holds (t; O (agent, α, [t1; t2])) ∧ [t1, t2] < [t, ∞] ∧
 ∀ act (instance _ of (act, α) ⇒
 holds (t, failed (agent, act, [t1, t2])))

In this statement, t is the time when the violation is
observed or detected. This type of inference is without
recourse to the norm's condition (agent, action type, norm
situation(condition), flexible time) that warranted the

intelligent software agent failure and identity of the
violated norm. This makes an agent (the normative agent
system) lose sight of the conditions under which a violation
took place. Take for instance a real life scenario; in an
electronic institution where there is a norm which says
agent has an obligation to supply an order within forty
eight (48) hours after receiving the placement order and the
acknowledgment of payment for the order. Generally, there
is always a condition warranting an action to take place in a
dynamic world. In the e-institution scenario given here, the
conditions required the agent to oblige (or fail to oblige) to
the norm are:

i) The agent receiving the placement order and,
ii) Receiving the acknowledgment of payment for

the order.
The ignored information about the violation makes it
difficult for an agent receiving it to know why a violation
has taken place and perhaps learn how to avoid such a
violation the next time, this is main gap paper aimed to
solve. Therefore, to completely formalise norms in a
dynamic normative agents system (NAS), there is an
absolute need to base the formalisation on the norm's
situation (condition) as well as action (or action type).

Apart from the above, the issues of time interval (internal
time) and validity of norms remains pertinent in normative
agent systems (NAS) formalisation. Internal time of norms
refers to the time interval in which the condition of the
norm should hold in order to produce the norm's effect
(Artikis, 2003; Marin and Sartor's, 1999). However, the
temporal constraints reasoning for NAS formalisation
should be flexible enough to capture dynamically the
temporal constraints between norms conditions and effect,
not just the temporal constraints based on fixed time as in
(Stratulat et al., 200la; and Sadri, et al., 2006). In other words,
it is very important in formalizing the life-cycle of
normative positions in a dynamic normative agents system
(NAS), to make use of a reified Temporal Constraint
Structure (TCS) which described constraints between the
times of situations and the action types they warrant in
each norm in a dynamic way.

Furthermore, it is equally important in deciding if an agent
violates a particular norm in NAS, the violation rule should
not be based on the existence or otherwise of an action and
temporal constraints only within a time interval, rather

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 908
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

should be formalised in terms of the existence or otherwise
of an action type, in response to the (or anticipation of)
situation (condition) satisfying the required temporal
constraint and the validity of the norm at the time of the
given situation (condition). A norm is considered valid at a
point in time if it is part (member) of the legal system in
consideration at that point in time. The validity interval of a
norm is the interval during which the norm is valid (that is,
external time).

3 THE CONDITION-BASED KNOWLEDGE
REPRESENTATIONAL STRUCTURES (CKRS)
Norms are viewed as the need for an agent to carry out or
avoid carrying out an action in response to (or in
anticipation of) a condition (here represented by situations
like in Situation Semantics (Schubert, 2000)) within some
time constraints. Thus the norms in this study have the
following components:
i) Normative position (e.g. Obligation, Prohibition, or
Permission)
ii) The agent itself,
iii) An action type,
iv) A situation,
v) The time constraint between the action and situation and
vi) The norm's identity.
A normative position is treated as the relation (or
predicates) bringing the other five elements together. The
signature of the language is subsequently defined.

3.1 THE LANGUAGE: SORTS, FUNCTIONS AND
PREDICATES
The language of the designed normative system in this
paper is a reified many sorted first order logic with
equality. The main sorts are Agents(Ag), Action-types (ActT),
Action (Act), Fluents (Fl), Events (Ev), Processes (Pr),
Situations (Sit), Time-Intervals(lnt), Temporal-Constraints (TC),
Norm-identifications (Nld). The Domain Sorts include entity
classes in the domain such as Class Classrooms, Objects.
There are three relations used to assert the fact that an
agent is in some normative position. These are Obligations,
Prohibitions and Permissions. Each of this is a quaternary
relation. The signatures are stated below:

Obligation: Ag x ActT x Sit x TC x Nld → Boolean
Prohibition: Ag x ActT x Sit x TC x Nld → Boolean
Permission: Ag x ActT x Sit x TC x Nld → Boolean

An obligation is true when an agent is expected to take a
particular action of a certain type when a situation arises, in
such a way that the times of agent's action and the situation
satisfy the temporal constraint. Similarly, a permission
(prohibition) is true when an agent is (not) allowed to carry
out any action of a certain type.

There are also predicates that denote Allen's (1984) interval
relations and the other predicates built on them.
Meets, After, Starts, Finishes, Contains, Overlaps: Int x Int →
Boolean
There are other temporal interval relations which definition
is based on those of Allen. Those include the following:

Within, Subinterval, Disjoint: Int x Int → Boolean

The Holds predicates are used to associate fluents that are
true with the situations in which they are true. Apart from
this, Actions and Action types are related by an instance
relation.

Holds: F1 x Sit → Boolean
Holds_in: F1 x Sit → Boolean

The following predicates describe relations involving
actions. The first one ActionType describes the relation
between an action instance and the action type, while Actor
is a relation between an action instance and the agent that
carries it out.

ActionType: Act x ActT → Boolean
Actor: Agent x Act → Boolean

With respect to situations there are two major relations
signified by the predicates SubSit and SubSitT respectively
denote sub-situation and temporal sub situation relations.

SubSit: Sit x Sit → Boolean
SubSitT : Sit x Sit → Boolean

A pair of situations is a member of the sub-situation
(SubSit) relation if every fluent that holds in the first
situation also holds in the second situation and their time
are the same. A pair of situations is a member of the
temporal sub-situation relation (SubSitT) if the time of the
first situation is a subinterval of the second.

Another relation denoted by the predicate Satisfy relates
two time intervals and a temporal constraint they satisfy:

Satisfy: Int x Int x TC → Boolean

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 909
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Satisfy is true when two time intervals satisfy the temporal
constraint. Another relation is between a norm and its time
of validity. The signature of the predicate is:

Valid: Norm-Id x Int → Boolean

There are also some group of functions. One group of
functions of 0 or 1-arity return actions.

arrive: Location → Act

The other group of 1-arity and 2-arity functions returns
fluents (A fluent is a reified propositional description of a
partial state of the world). A good example of this is when a
fluent is defined by the occurring of an event. Another
function/prog is when a fluent is defined by a process being
in progress,

occurring: Ev → F1
prog: Pro → Fl

The other examples include an agent possessing an object
and the fact that an event is happening at a location.

possess: Ag x Object → F1
venue: Event x Location → F1

There is a maintain function which returns the kind of
action that an agent takes when he keeps a fluent holding in
a situation:

 maintain: F1 → ActT

Apart from these there are four time functions TimeA and
TimeS, TimeE and TimeP which map actions and
situations, events and processes respectively to time.

timeA: Act → Int
timeS: Sit → Int
timeE: Ev → Int
timeP: Pr → Int

A Time point image (TPI) may be either of the constants (B,
E} or an application of the time displacement function tdisp
to either B or E and an integer. The signatures are given as
follows:

tdisp: TPI x Integer → TPI
A basic time constraint is obtained by the application of one
of the functions eq (which means equal to), le (which means
less than or equal to), lt (which means less than), gt (greater
than) and ge (greater than or equal to).

eq, le, It, gt, ge : TPI x TPI → TC

Other temporal constraints can be obtained by applying
Boolean functions on existing temporal constraints.

and: TC x TC → TC
of: TC x TC → TC
neg: TC → TC

3.2 SEMANTICS OF THE LANGUAGE
This subsection focuses on describing the logical entities of
the representation such as; situations, fluent, action type,
temporal constraints structure (TCS), satisfaction rules and
their interactions.

3.2.1 SITUATIONS
The notion of situations as used in this thesis covers such
concepts as states and the occurring of events and
processes, A common name for all these in the literature is
the term eventualities as used by Galton, (2005). However,
the term situations are used because the usage of the term is
akin to the Situational Calculus and the domain of
situations and their relations are similar to those used by
the situation semantics inspired work of Schubert (2000).
Like in Schubert's FOL**, a fluent may either partially or
fully characterize a situation. However unlike FOL**, the
possibility of ever associating complex (logical) sentences
with situations is ruled out. In fact the fluent is treated as
the range for a function.

The predicate Holds is used to associate a fluent with a
situation that it fully characterizes, while the predicate
Holds_in is used in the case of characterizes. Holds_in is a
generalization of Holds. That relationship between them is
formalised thus:

∀f, s. Holds(f, s) → Holds_in(f, s)
In semantic terms, a situation is treated (in this paper) as a
solid entity so that it can only be true over a specific
interval.

Sometimes the occurring of an event may fully characterize
a situation but the fact that an agent plays a specified role
in the event only partially characterizes the same situation.
For instance, if an event of the type class holds in a certain
situation, then some particular agent must play the role of a
teacher in that situation, while a number of other agents
must play the role of students. This can be expressed:
∀s. Holds(occurring(class), s) ˄ Event_type(class, Class) →

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 910
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 Ǝ! a. Holds_in(role(a, Teacher), s)

∀s. Holds(occurring(class), s) ˄ Event_type(class, Class) →
 Ǝa. Holds_in(role(a, Student), s)
These kind of partial characterizations in terms of Holds_in
are important for us to be able to specify norms of conduct
when an event brings together different agents. In general if
a fluent partially characterizes a situation then there is a
situation it fully characterizes which is a sub-situation of
the original situation. This is formalised as:
∀f, s. Holds_in(f, s) ↔ Ǝ s1 Holds(f, s1) ˄ SubSit(s1, s)

∀s, s1. SubSit(s, s1) ↔ (∀f. Holds_in(f, s) → Holds_in(f, s1)) ˄
timeS(s) = timeS(s1)

Another relation between fluent and situation is denoted by
the predicate Holds_within.
∀f, s. Holds_within(f, s) ↔ Ǝ s1 Holds(f, s1) ˄ SubSitT(s1, s)
∀s, s1. SubSitT(s, s1) ↔ Subinterval(timeS(s), times(s1))

The time of an event which occurring constitutes a situation
is the same as the time of the situation. That is formalised
thus:

∀e, s. Holds(occurring(e), s) → timeE(e) = timeS(s)

3.2.2 FLUENTS AND ACTION TYPE
In this language, action types and fluent are reified. In
principle reification is about making something which
ordinarily would be regarded as a proposition into a thing
that can be quantified and reasoned about (Galton 2005). In
Artificial Intelligence (AI) literature eventualities such as
states, events and processes which are normally
represented as proposition are reified.

In reifying, the predicates involved in the proposition are
given the status of functions of appropriate arity returning
the appropriate kind of eventuality such as fluent or action
type. As pointed out earlier, the occurring of an event and
the progress of an event can be

regarded as fluents. Either of this kind of fluents can
completely characterize a situation. For example, the
situation so is fully characterized by the occurring of an
event e:

Holds(occurring(e), s0)
Similarly the situation si is fully characterized as a process p

being in progress:
Holds(prog(p), s1)

3.2.3 TEMPORAL CONSTRAINTS STRUCTURE (TCS)
Temporal constraints are needed to specify the constraint
between the time of a norms effect and the situation. Time
constraints were reified as done by Sadri et al., (2006).
However, the difference between this approach and Sadri et
al. is that their constraints involve actual times while this
involves time point images (TPIs). The time point images
are used to model such constraints as within ten minutes of
the beginning of the class and not later than five minutes to the
end of the examination.etc.

For example, Sadri et al. (2006) gave an example of
formalizing the prohibiting any agent from parking at the
city centre between 10 Hours and 17 Hours as:

prohibited(act(park, a, city centre), T, 10 < T < 17)

However, the reality is that the times given for this
constraint are given relative to the start of any new day. In
that sense the times used in this constraint are really not
absolute times. Another example that illustrates this from
Stratulat et al. (200la, 2001b) is the example of an obligation
to pay taxes between January 1 and 3 1 every year on the
part of an agent a. That is rendered as a function O
returning a fluent may hold at a certain time. This fluent is
rendered as:

O(a, pay-taxes, [January - 1 , January-31])
Again these times are erroneously taken as time points.
However, they are at best images which are relative to the
beginning of a year. They only become a time point when
those dates are located within a specific year, just as the
time point in the last example needs to be situated within a
specific day for it to be an actual time point.

The approach in this study on the norm representation,
therefore, is to relate the time of the condition of a norm
(which was expressed as a situation), with that of the effect
of the norm which is the time of the action of the type
specified as a response to the situation. A basic temporal
constraint is composed by the application of one the
functions eq (equal), ge (greater than or equal to), le (less
than or equal to), gt (greater than) and lt (less than) to an
ordered pair of TPI, the first relating to the action (or
norm's effect) while the second is related to the situation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 911
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

(norm's condition). For example:
eq(B, E) means the action begins when the

warranting situation ends.
eq(tplus(B, 3), E) means that the action is to start
exactly 3 time units after the situation ends.

Other temporal constraint can be composed from other
temporal constraints by the functions and, or as well as neg.
For example, and(eq(B, B), eq(E, E)) describes an action that
must take place at exactly the same time as the situation.

Each of Allen's qualitative relations (Allen, 1984) can be
represented by the proposed TCS. The following are the
equivalences between Allen's interval relations and the
proposed TCS.

Before = lt(E, B)
Overlaps = and(lt(B, B), lt(E,E))
Contains = and(lt(B, B), gt(E, E))
Starts = and(eq(B, B), lt(E, E))
Finishes = and(gt(B, B), eq(E, E))
Meets = eq(E,B)

A major advantage of the TCS representation is that it can
represent constraints that combine both qualitative and
quantitative relationships. Examples of such relationships
are:
Start not later than 4 units of time into = ge(B, tplus(B, 4))
End 10 units of time into = eq(E, tplus(B, 10)

These are the kinds of constraints that norms may contain
as holding between norm conditions and their effects. The
following section presented a formalisation of the real life
norms.

3.3 REPRESENTATION OF NORMS
A norm is basically a rule. Each of these normative rules help
in making inferences about what an agent is expected to do
or desist from doing within a certain time frame. The
inferences made from these normative rules are referred to
as normative tokens.
An obligation requires an agent to carry out an action of a
certain type within a time constraint if it is playing a certain
role within a certain context. An obligation is violated by an
agent if when it finds itself playing the specified role within
such a context it fails to carry out an instance of that action
type within the time constraint. The structure of the
predicate for representing obligations is presented thus:

Obligation(Agent, Action-type, Situation, Temporal-
Constraint, Norm-Id)

Norm-id is an identifier for the norm rule that produced the
actual normative token which is an obligation. Every
obligation that is produced by the norm bears the same
norm-id. As such every rule that helps to infer obligations,
prohibitions and permissions has a unique norm-id that it
carries. This kind of rule naming is refered to by the term
rule reification which is similar in spirit to the notion of
Davidson's reification (Galton 1991), This is illustrated with
Norm 3.1 and 3.2 as examples of rules generating this kind
of normative tokens.

Norm 3.1
A teacher assigned to teach a class must arrive either on time or
not later than 10 minutes into the time of a class.
∀a, v, s,
Obligation(a, arrive-at(v), s, and(le(E, tplus(B,10)), ge(E, B)),
OB101) if

Ǝ e.
Holds(occurring(e), s) ˄
EventType(e, Class) ˄
Holds-in(venue(e, v), s) ˄
Holds-in(role(a, Teach), s))

Norm 3,2
Student must register for his/her courses in a semester within one
month of the commencement of the semester.
∀a, o, s.
Obligation (a, register(a,sem)), s, and(and(ge(E, B), le(E,B,
30)), ge(B,B)), OB102) if
 Ǝs1, s2

Holds(studentship(a),S1) ˄
ProcessType(Sem, Semester) ˄
Holds(prog(sem), s) ˄
Within(timeS(s), timeS(s1))˄
¬ OnSuspension(a, sem)

A prohibition is a norm that disallows an agent to carry out
an action of a certain type within some time interval that
has a temporal relation with the warranting situation
(condition) of the prohibition. The structure of a prohibition
is given thus:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 912
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Prohibition(Agent, Action-type, Situation, Temporal-
Constraint, Norm-id)

The norm 3.3 and norm 3.4 illustrate examples of rules that
infer such normative tokens.

Norm 3.3
Student must not be allowed to come in for an examination thirty
(30) minutes after the
commencement of the examination.
∀a, s, e.
Prohibition(a, arrive(v), s, gt(E, tplus(30)}, PR0103), if

Holds(occuring(e), s) ˄
EventType(e, Examination)) ˄
Holds(Venue(e,v), s) ˄
Holds-in(role(a, Candidate), s)

Norm 3.4
It is prohibited for members of university community to release
confidential document of the university to public domain without
authorization.
∀a, doc, s,
Prohibition(a, release(doc), s, or(and(lt(B, E), ge(B, B)),
and(le(E, E), gt(E, B))), PRO014) if

Ǝs1,s2, u.
Holds(alive(doc), s1) ˄
Holds(Statusdoc(doc, Confidential) ˄
Holds(employ(u, a), s2) ˄
University(u) ˄
Submterval(timeS(s), timeS(s1)) ˄
Submterval(timeS(s), timeS(s2)) ˄

A permission is a norm that allows an action by an agent as
a result of a certain situation arising. The structure of
permission is similar to that of the other kinds of norms as
seen below:

Permission(Agent, Action-type, Situation, Temporal-
Constraint, Norm-id)

Examples of this is given in norm 3.5 and norm 3.6

Norm 3.5
Members of the university community are permitted to put on
their official identity card while on duty.
∀a, s,
Permission(a, put_id-on(a), s, and(ge(B, B), le(E, E)), PER010)

if
 Ǝu, s1

Holds(onDuty(a), s)
Holds(employ(a, u) s1)
University(u)
Within(timeS(s), timeS(s1)

Norm 3.6
Lecturer is permitted to give reading books on his assigned course
to the student at the beginning of lecture in a semester.
∀a, b, s.
Permission(a, give(b), s, le(E, B), PER012) if

Ǝco.
Holds(prog(co), s) ˄
ProcessType(co, Course) ˄
Holds_in(role(a, Teacher), s) ˄
Holds_in(role(b, ReadingBook), s)

Having represented norms, it is important to discuss the
representation of the validity of those norms. Norm validity
is a relation between a norm and the interval over which
the norm is valid. For example, the legal norm from the
formalisation of the British Nationality Act 1981 (Segot et
al., 1986).

The norm any person born in the UK becomes a British citizen
is a norm that was only valid until 1981. A representation of
that norm in the proposed language is presented thus:
∀x, s
Obligation (HMG, grant-citizenship(x), s, eq(E, B), NBB-1) if

Holds(born-in(x, UK), s)

However, any agent interpreting that norm on behalf of
Her Majesty's Government (HMG) must be aware that the
validity of the norm is from 1950 and 1981.

Validity(NBB-l,(1950, 1981))
As such it is only if the norm situation s happened within
that interval of validity that the norm NBB-1 is valid.
Validity is an important condition for deciding norm
violation as we shall demonstrate.

3.4 SATISFACTION RULES
The proposed Satisfaction Rules (SRs) are used to decide
whether or not a particular pair of time intervals satisfies a
temporal constraint. Those time intervals may be times of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 913
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

actions, situations or even events. Some of the SRs are
recursive such as:
∀act,s,tcl,tc2

Satisfy-Cons(timeA(act), timeS(s), and(tcl, tc2)) if
Satisfy-Cons(timeA(act), timeS(s),tcl) ˄
Satisfy-Cons(timeA(act), timeS(s), tc2).

The other non-recursive rules handle basic temporal
constraints. These rules represent a simple translation of
each of the temporal constraint functions into the
equivalent relation. The following axioms are all examples
of the It constraint.
∀act, s.
Satisfy-Cons(timeA(act), timeS(s), lt(disp(B, t1), disp(B, t2))) if

begin(timeA(act)) + t1 < begin(timeS(s)) + t2

∀act, s.
Satisfy-Cons(timeA(act), timeS(s), lt(B, E)) if

begin(timeA(act) < end(timeS(s))

∀act, s,
Satisfy-Cons(timeA(act), timeS(s), lt(E, B)) if

end(timeA(ati)) < begin(timeS(s))

∀act, s.
Satisfy-Cons(timeA(act), timeS(s), lt(E, E)) if

end(timeA(act)) < end(timeS(s))

3.5 NORM VIOLATIONS
In order to make inferences about norm violation one need
to know the existence of three fundamental things. The first
thing is the existence of a normative token such as an
agent's obligation or prohibition to carry out or desist from
carrying out an action. The second thing is the failure to
conform to the requirement of the normative token. The
third thing is the validity of the normative rule at the time
the condition held.

The violation of an obligation takes place when in the
occurrence of the situation within the validity period of the
rule that generated the normative token, the agent
implicated is unable to carry out the needed action within
the required time constraint. This is formalised as the
following Horn's Clause:
∀a, norm-id, s.
Violate(a, norm-id, s) if

Ǝ act-type, tc.
Obligation(a, act-type, s, tc, norm-id) ˄
Validity(norm-id, j) ˄ Subinterval (timeS(s), j) ˄
∀act (¬EventType (act, act-type)˅
¬ Actor(a, act) ˅
¬ Satisfy-Cons(timeA(act), timeS(s), tc))

In the case of a prohibition, a violation takes place when in
the case of the occurrence of the situation, the implicated
agent carries out the forbidden action during a time interval
that satisfies the constraint with the time of the situation.
Such a violation is formalised thus:
∀a, norm-id, s.
Violate(a, norm-id, s) if
 Ǝ act-type, tc, act.

Prohibition(a, act-type, s, tc, norm-id) ˄
ActionType(act, act-type) ˄
Actor(a, act) ˄

Validity(norm-id, j) a, Subinterval(timeS(s), j) ˄
Satisfy-Cons(timeA(a), timeS(s), tc).

This approach contrasts with timed violations that were
implemented by Stratulat et al., (200la). In Stratulat et al.
work, a violation of an obligation is said to have taken place
at a time t, if an agent has an obligation to carry out an
action during the time interval (t1, t2) and as at time t which
is later than t2 the action has not yet been taken.

3.6 COMPARATIVE EVALUTION OF CKRS WITH

EXISTING NORMS REPRESENTATIONS
The proposed CKRS is concerned with the logic constructs
of norms representation leading to normative violation
inferences that will facilitate how multiagent sytems
regulate the agents in the systems. Table I shows the
comparison of the proposed CKRS with existing norms
representation approaches in literature. The comparison
shown in Table I involves norms representation literature
between years 2001 to 2012.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 914
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

The CKRS can represent real life norms much better than
existing methods in literature because it was formalised
using reified Frst Order Logic that confer expressive
advantages in representing norms and meta-norms.
Furthermore, the CKRS based its temporal constraints
reasoning on Time Point Images (TPI) that is able to capture
both qualitative and quantitative constraints between
arbitrary times. However, CKRS allows the representation
of norms using relative times. The violation inference of the
proposed CKRS takes into consideration, the situation
warranting the norm violation and the validity of the norm
as the time of the situation and the time of the action with
respect to whether it satisfies the prescribed constraint with
the time of the situation. When a violation is established,
the CKRS will explicitly capture the condition (situation)
warranting the violation and the identity of the norm
violated.

4 CONCLUSION
The proposed Temporal Constraints Structures' (TCS) can
represent constraints that combine both qualitative and
quantitative relationships. Also, the time point images
(TPIs) involved in the TCS will aid greatly in relating the
time of the condition of a norm (situation) with that of the
effect of the norm which is the time of the action of the type
specified. This is opposed to existing methods in literature
which is based on the time of the action only. Furthermore,
a condition-based knowledge representational structure
was developed. The condition and the identity of the norm
violated were adequately represented with the developed
structure. Multi-agent systems can adopt this CKRS to
regulate agents' interaction in the system. This kind of
normative system will enhance the ability of agents new to
the society to become aware of existing norms in the
society.

5 RECOMMENDATIONS
A future direction of this work is to situate the violation
necessarily within the context of a wider logical theory of
action. Such a logical theory of action which is beyond the
scope of this work will be mindful of the fact that an action
has both preconditions and post-conditions. In that case for
example, an agent may not be held liable for a violation if
the conditions are not suitable for carrying out the
obligation. In this type of scenario should be regarded as an
excusable violation, which should not attract any sanction.
Another potential direction of this work is to explore how
plan recognition theories can enchance norm learning. Plan
recognition theories enable the inference of high level goals
from individual actions carried out by an individual agent.

REFERENCES

1. Ahmad, A., Ahmed, M., Yusof, M. Z. M., Ahmad,

M. S. and Mustapha, A. 2011. Resolving conflicts

between personal and normative goals in

normative agent systems. In 7th International

Conference on Information Technology in Asia:

Emerging Convergences and Singularity of Forms

(CITA'll), Kuching, Sarawak. 1-12.

2. Allen, J. F., 1983. Maintaining knowledge about

temporal intervals. Communications of the ACM .

26.11:832-843.

3. Allen, J. F., 1984. Towards a General Theory of

Action and Time. Artificial Intelligence. 23:123-54.

4. Allen, L." E., 1980. Language, law and logic: Plain

drafting for the electronic age. In B. Niblett, editor,

Computer Science and Law. 75-100.

5. Allen, L. E., 1982. Towards a normalized language

to clarify the structure of legal discourse. In

Deontic Logic, Computational Linguistics and Legal

Information Systems. 2: 349-407.

6. Artikis, A. 2003. Executable specification of open

norm-governed computational systems. Ph. D

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 915
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Thesis. Department of Electrical and Electronic

Engineering. University Of London. 1-235.

7. Artikis, A. 2009. Dynamic protocols for open agent

systems. In Proceedings of International Conference on

Autonomous Agents and Multi-Agent Systems

(AAMAS) ACM . 97-104.

8. Artikis, A., Sergot, M. and Pitt, J. 2007. An

executable specification of a formal argumentation

protocol. Artificial Intelligent. 171(10-15):776-804.

9. Artikis, A., Sergot, M. and Pitt, J. 2009. Specifying

norm-governed computational societies. ACM

Transactionson Computational Logic. 10(1): 2 - 34 .

10. Artikis, A. and Sergot, M. 2010. Executable

Specification of Open Multi-Agent Systems, mjs-

IGPL-artser-fmal.tex. 1-32.

11. Galton, A. P. 2005. Eventualities. In Fisher M,

Gabbay D' and Vila L.(eds) Handbook of Temporal

Reasoning in Artificial Intelligence, Elsevier. 1-23.

12. Operators vs arguments: the ins and outs of

reification. Kluwer Academic Publishers, Netherlands.

1-23.

13. Hoffmann, M. J. 2003. Entrepreneurs and norm

dynamics: an agent based model of the norm life

cycle. Technical Report, Department of Political

Science and International Relations, University of

Delaware, Newark, Del, USA. 1-38.

14. Jones, A. J, I. and Kimborough S.O, 2012. On the

Representation of Normative Sentences in FOL. In

Artikis A. et al. (eds) Logic, Programs, Norms and

Actions: Essays in honour of Marek J. Sergot On the

Occasion of his 60th Birthday Lecture Notes In

Artificial Intelligence, Springer Verlag, Berlin,

7360: 273-294.

15. Jones, A. J. I. and Sergot, M. 1993. On the

characterisation of law and computer systems: The

normative systems perspective. In Deontic Logic in

Computer Science: Normative System Specification,

John Wiley and Sons. 275-307.

16. Kowalski R. and Sergot M., 1986. A logic-based

calculus of events. New Generation Computing,

4.1:67-96.

17. L'opez y L'opez, F. 2003. Social power and norms:

Impact on agent behavior. Ph.D thesis. Electronics

and Computer Science Department, Faculty of

Engineering and Applied Science, University of

Southampto. xiii + 241.

18. Marin R. and Sartor 0. 1999. Time and norms: a

formalisation in the event calculus. In Proceedings of

Conference on Artificial Intelligence and Law (ICAIL),

ACM Press. 90 -100.

19. Panagiotidi S, Nieves, J.C, and Vazquez-Salceda, J.

2009. A framework to model norm dynamics in

Answer Set Programming. Proceedings of the Second

Multi-Agent Logics, Languages, and Organisations

Federated Workshops, Turin, Italy. 1-23.

20. Royakkers, L. and Dignum, F. 1997. Giving

permission implies giving choice. In E.

Schweighofer, editor, 8th International Conference and

Workshop on Database and Expert Systems

Applications, Toulouse, France. 198-203.

21. Sadri, F., Stathis, K. and Toni, F. 2006. Normative

KGP agents. Computational and Mathematical

Organization Theory. 12.2-3:101-126.

22. Schubert, K.L. 2000. The situations we talk about.

From J. Minker (ed.), Logic-Based Artificial

Intelligence, KluwerAcad. Publ, Dortrecht. 407 - 439.

23. Stratulat, T. 1999 . Normative agent systems. In

Proceedings of Policy Workshop. 1-5.

24. Stratulat, T. Cerin-Debart, F. and Enjalbert, P.

(200la). Norms and time in agent-based systems. In

Proceedings of Conference on Artificial Intelligence and

Law (ICAIL), ACM Press. 178-185.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 916
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

25. Stratulat, T. Cerin-Debart, F. and Enjalbert, P.

2001b. Temporal reasoning: an application to

normative systems. In Proceedings of Symposium on

Temporal Representation and Reasoning (TIME), IEEE

Computer Society. 41-47.

IJSER

http://www.ijser.org/

